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The P = NP Question 

Definitions 
•� The class P consists of all decision problems that can be 

solved in polynomial time by a deterministic Turing machine. 

•� The class NP consists of all decision problems that can be 
solved in polynomial time by a nondeterministic Turing 
machine. 
–� A decision problem is one that has only a yes-or-no answer. 
–� Polynomial time is a measure of computational complexity that 

is bounded by a polynomial. 
–� A deterministic Turing machine follows only one execution 

path at a time. 
–� A nondeterministic Turing machine can follow multiple paths 

in parallel. 

•� The P = NP question is whether these two classes are the same. 

Graphs of the Complexity Classes 
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Recursion 
•� One of the most important great ideas in computer science is 

the concept of recursion, which is the process of solving a 
problem by dividing it into smaller subproblems of the same 
form.  The italicized phrase is the essential characteristic of 
recursion; without it, all you have is a description of stepwise 
refinement of the sort we teach in courses like CS 106A. 

•� The fact that recursive decomposition generates subproblems 
that have the same form as the original problem means that 
recursive programs will use the same function or method to 
solve subproblems at different levels of the solution.  In terms 
of the structure of the code, the defining characteristic of 
recursion is having functions that call themselves, directly or 
indirectly, as the decomposition process proceeds.  

A Simple Illustration of Recursion 
•� Suppose that you are the national fundraising director for a 

charitable organization and need to raise $1,000,000. 

•� One possible approach is to find a wealthy donor and ask for 
a single $1,000,000 contribution.  The problem with that 
strategy is that individuals with the necessary combination of 
means and generosity are difficult to find.  Donors are much 
more likely to make contributions in the $100 range. 

•� Another strategy would be to ask 10,000 friends for $100 
each.  Unfortunately, most of us don’t have 10,000 friends. 

•� Recursion offers a more promising strategy.  All you need to 
do is find ten regional coordinators and ask each one to raise 
$100,000.  Those regional coordinators in turn delegate the 
task to ten local coordinators, each with a goal of $10,000, 
and so on until the donations can be raised individually.  
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A Simple Illustration of Recursion 
The following diagram illustrates the recursive strategy for 
raising $1,000,000 described on the previous slide: 
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A Pseudocode Fundraising Strategy 
If you were to implement the fundraising strategy in the form of 
a JavaScript function, it would look something like this: 

function collectContributions(n) { 
   if (n <= 100) { 
      Collect the money from a single donor. 
   } else { 
      Find 10 volunteers. 
      Get each volunteer to collect n/10 dollars. 
      Combine the money raised by the volunteers. 
   } 
} 

What makes this strategy recursive is that the line 
Get each volunteer to collect n/10 dollars. 

will be implemented using the following recursive call: 
collectContributions(n / 10); 

A Recursive View of Mazes 

�

•� Solving a maze algorithmically is 
simplest if you use recursion, but  
coding that solution requires you to 
find the right recursive insight.  

•� Consider the maze shown at the 
right.  How can Theseus transform 
the problem into one of solving a 
simpler maze? 

•� The insight you need is that a maze 
is solvable only if it is possible to 
solve one of the simpler mazes that 
results from shifting the starting 
location to an adjacent square and 
taking the current square out of the 
maze completely. 

A Recursive View of Mazes 

�

•� Thus, the original maze is solvable 
only if one of the three mazes at 
the bottom of this slide is solvable. 

•� Each of these mazes is “simpler” 
because it contains fewer squares. 

•� The simple cases are: 
–� Theseus is outside the maze 
–� There are no directions left to try   

� 
� 

� 

Recursion and Backtracking 
•� The complete recursive solution operates as follows: 
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Exponential Backtracking 
•� The time required for the standard backtracking algorithm 

grows exponentially if there are large open areas in the maze: 

•� This exponential behavior is not fundamental to the maze 
algorithm.  If the program doesn’t unmark the squares as it 
backtracks, the program can find the exit in linear time. 
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Exploiting Nondeterminism 

1 

•� Another approach to solving a maze is to explore all paths 
concurrently as you proceed. This strategy is analogous to 
cloning yourself at each intersection and sending one clone 
down each path. 

•� Is this parallel strategy more efficient in the general case? 
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Nondeterministic Turing Machines 
•� As with the nondeterministic maze solver, a nondeterministic 

Turing machine can explore more than one solution strategy 
at once. 

•� In its most common formulation, a nondeterministic Turing 
machine is defined by allowing each instruction to transition 
to several new states.  In effect, these multiple transitions 
clone the machine, with each of the clones continuing in a 
different state. 

•� It is conventional to define two new states: accept and reject. 
A nondeterministic Turing Machine accepts its input if any of 
its cloned copies ever reaches the accept state. 

Relationship between P and NP   
All decision problems 

NP�
P�

NP-Complete Problems 
•� The search for an answer to the P=NP 

question depends on the notion of      
NP-complete problems, which was 
introduced by Stephen Cook in 1971.  In 
an informal sense, a problem is          
NP-complete if it is provably as difficult 
to solve as any other problem in NP. 

•� The immediate implication of this 
definition is that if some NP-complete 
problem can be solved in polynomial 
time, then all problems in NP can be 
solved in polynomial time. 

•� In practice, one establishes that a problem is NP-complete by 
showing that the computation of any nondeterministic Turing 
machine can be expressed in that domain. 

Stephen Cook (1939–)�

Traveling Salesman Problem 
•� One of the classic NP-complete problems—noted mostly for 

its practical importance—is the Traveling Salesman Problem 
(often designated as TSP for short), which asks whether it is 
possible for a salesman to complete a cycle of a set of cities 
within some fixed cost. 

—Randall Munroe, XKCD 

Subset Sum 

Suppose that you have a set of integers called S.  The subset-sum 
problem asks whether there is a subset of the elements of S that add 
up to a particular target value t.  For example, if S is the set          
{ –3, 5, 7, 10 }, the subset-sum problem when t is 12 returns the 
answer true because the elements in the subset { –3, 5, 10 } add 
up to 12.  By contrast, if t were 11, the answer is false because it 
is impossible to choose a subset of S whose values adds up to 11.  
In his early study of NP-complete problems in 1972, Richard Karp 
proved that the subset-sum problem is NP-complete, although his 
original papers refer to the problem by a different name.  
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Graph Coloring 
Suppose that you have a graph 
consisting of a set of vertices 
connected by a set of edges, which 
might, for example, look like either of 
the graphs to the right.  The vertices of 
the top graph can be colored using 
three colors so that no two vertices 
connected by an edge share the same 
color.  You could, for example, color 
nodes 1 and 3 white, 2 and 4 gray, and 
5 blue.  In the bottom graph, however, 
all four nodes are interconnected, 
which means that each must each have 
a different color.  Deciding whether a 
graph can be colored with k colors is 
NP-complete.  

Origami Folding 
The diagram at the right shows the 
first eight folds on the way to the 
creation of a classic origami crane.  In 
some of these folds, the crease rises 
toward you from the paper.  These are 
called mountain folds and appear in 
the diagram as dashed lines.  In other 
folds, the crease moves away from 
you.  These are called valley folds and 
appear as dotted lines.  In 1996, 
Marshall Bern and Barry Hayes 
proved that deciding whether a 
particular pattern of mountain and 
valley folds will produce a flat origami 
figure is NP-complete.  

Minesweeper 

One of the most widely publicized 
problems in the NP-complete domain 
is that of determining whether a 
particular pattern of warning counts in 
the popular Microsoft Minesweeper 
game is consistent.  In 2000, Richard 
Kaye published a paper proving that 
solving the minesweeper consistency 
problem is NP-complete.  Because of 
the popularity of the game, Kaye’s 
result was reported in newspapers and 
magazines throughout the world. 

Satisfiability 
•� The problem that Steven Cook used in his proof is the 

Satisfiability Problem (commonly abbreviated as SAT), which 
asks whether any assignment of values to the variables of an 
expression in predicate logic makes that expression true. 

•� Expressions in predicate logic consist of individual terms, 
each of which can take on the value true or false, connected 
by operators, which include � (and), � (or), and ¬ (not).  
Terms appear as lowercase italic letters, such as p, q, r, and s. 

•� The SAT problem requires that the logical expression be in 
conjunctive normal form, in which the expression consists of 
individual terms, possibly preceded by ¬ (and usually written 
using an overbar instead of the ¬ symbol), and then combined 
first by the � operator, and finally by the � operator.  It is 
always possible to use the rules of logic to rewrite any 
expression in conjunctive normal form. 

Proving Satisfiability is NP-Complete 
•� The goal is to show that SAT is NP-complete, which means 

that a polynomial time solution to SAT implies a polynomial 
time solution to an arbitrary problem in NP. 

•� If X is an arbitrary problem in NP, that means that there must 
be a Turing machine MX that solves X in time bounded by a 
polynomial pX.  

•� The fact that the running time of MX is bounded by pX not 
only limits the number of steps MX can execute but also puts 
an upper bound on how many tape squares it can reach 
because the tape head can move only one square per step. 

•� If SAT can be solved in polynomial time, it is then possible to 
solve X in polynomial time by taking its Turing machine MX, 
transforming it into an equivalent SAT problem, and then 
using the polynomial-time solution of SAT to find the answer. 

Constructing the SAT Expression 
Step 1: Start with a Turing machine MX and its polynomial pX.   
Step 2: Create a set of logical variables to describe the computation: 

Step 3: Encode the Turing machine operation as logical rules that 

sk,t indicates that the machine is in state k at time t. 
pk,t indicates that the tape head is in position k at time t. 
ck,t indicates that the tape square k contains a 1 at time t. 

–� Encode the initial configuration 
–� Ensure the machine is in exactly one state. 
–� Ensure the tape head is in one position. 
–� Restrict changes to the tape head. 
–� Encode all transitions of the machine. 
–� Guarantee that the machine ends in the accept state. 


