
Eric Roberts Handout #7
CS 54N October 10, 2016

Binary Arithmetic and Digital Logic

Binary Arithmetic
and Digital Logic

Eric Roberts
CS 54N

October 10, 2016

Great Ideas in Computing Hardware

1. All data processed by computers—including the
instructions used to create computer programs—can be
represented using collections of individual binary digits,
or bits.

The amazing complexity of modern computers arises
largely from the use of extremely simple components
replicated on a massive scale.

2.

3. The best way to manage the complexity of modern
computers is to define a hierarchy of virtual machines,
each of which hides at least some of the complexity of
the underlying layers.

The Power of Bits
•� The fundamental unit of memory inside a computer is called a

bit—a term introduced in a paper by Claude Shannon as a
contraction of the words binary digit.

•� An individual bit exists in one of two states, usually denoted
as 0 and 1.

•� More sophisticated data can be represented by combining
larger numbers of bits:
–� Two bits can represent four (2 × 2) values.
–� Three bits can represent eight (2 × 2 × 2) values.
–� Four bits can represent 16 (24) values, and so on.

•� This laptop has 16GB of main memory and can therefore
exist in 2549,755,813,888 states. If you were to write that number
out, it would contain more than fifty billion digits.

Leibniz and Binary Notation
•� Binary notation is an old idea.

It was described back in 1703
by the German mathematician
Gottfried Wilhelm von Leibniz.

•� Writing in the proceedings of
the French Royal Academy of
Science, Leibniz describes his
use of binary notation in a
simple, easy-to-follow style.

•� Leibniz’s paper further suggests
that the Chinese were clearly
familiar with binary arithmetic
2000 years earlier, as evidenced
by the patterns of lines found in
the I Ching.

42

0 x 0 1 =
1 x 2 2 =
0 x 0 4 =
1 x 8 8 =
0 x 0 16 =
1 x 32 32 =
0 x 0 64 =
0 x 0 128 =

Using Bits to Represent Integers
•� Binary notation is similar to decimal notation but uses a

different base. Decimal numbers use 10 as their base, which
means that each digit counts for ten times as much as the digit
to its right. Binary notation uses base 2, which means that
each position counts for twice as much, as follows:

0� 0� 1� 0� 1� 0� 1� 0�

Numbers and Bases
•� The calculation at the end of the preceding slide makes it

clear that the binary representation 00101010 is equivalent to
the number 42. When it is important to distinguish the base,
the text uses a small subscript, like this:

001010102 = 4210

•� Although it is useful to be able to convert a number from one
base to another, it is important to remember that the number
remains the same. What changes is how you write it down.

•� The number 42 is what you get if you count
how many stars are in the pattern at the right.
The number is the same whether you write it
in English as forty-two, in decimal as 42, or
in binary as 00101010.

•� Numbers do not have bases; representations do.

– 2 –

Octal and Hexadecimal Notation
•� Because binary notation tends to get rather long, computer

scientists often prefer octal (base 8) or hexadecimal (base 16)
notation instead. Octal notation uses eight digits: 0 to 7.
Hexadecimal notation uses sixteen digits: 0 to 9, followed by
the letters A through F to indicate the values 10 to 15.

•� The advantage of using either octal or hexadecimal notation is
that doing so makes it easy to translate the number back to
individual bits because you can convert each digit separately.

•� The following diagrams show how the number forty-two
appears in both octal and hexadecimal notation:

2 x 2 1
5 x 40 8

5� 2�

42

10 x 10 1
02 x 32 16

2� A�

42

octal� hexadecimal�

=
=

=
=

Exercises: Number Bases
•� What is the decimal value for each of the following numbers?

•� As part of a code to identify the file type, every Java class file
begins with the following sixteen bits:

1� 1� 0� 0� 1� 0� 1� 0� 1� 1� 1� 1� 1� 1� 1� 0�

 How would you express that number in hexadecimal notation?

Bits and Representation
•� Sequences of bits have no intrinsic meaning except for the

representation that we assign to them, both by convention and
by building particular operations into the hardware.

•� As an example, a 32-bit word represents an integer only
because we have designed hardware that can manipulate those
words arithmetically, applying operations such as addition,
subtraction, and comparison.

•� By choosing an appropriate representation, you can use bits to
represent any value you can imagine:
–� Characters are represented using numeric character codes.
–� Floating-point representation supports real numbers.
–� Two-dimensional arrays of bits represent images.
–� Sequences of images represent video.
–� And so on . . .

Representing Characters
•� Computers use numeric encodings to represent character data

inside the memory of the machine, in which each character is
assigned an integral value.

•� Character codes, however, are not very useful unless they are
standardized. When different computer manufacturers use
different coding sequence (as was indeed the case in the early
years), it is harder to share such data across machines.

•� The first widely adopted character encoding was ASCII
(American Standard Code for Information Interchange).

•� With only 256 possible characters, the ASCII system proved
inadequate to represent the many alphabets in use throughout
the world. It has therefore been superseded by Unicode,
which allows for a much larger number of characters.

The ASCII Subset of Unicode
The following table shows the first 128 characters in the Unicode
character set, which are the same as in the older ASCII scheme:

\000� \001� \002� \003� \004� \005� \006� \007�
\b� \t� \n� \011� \f� \r� \016� \017�

\020� \021� \022� \023� \024� \025� \026� \027�
\030� \031� \032� \033� \034� \035� \036� \037�
space� !� "� #� $� %� &� '�
(�)� *� +� ,� -� .� /�
0� 1� 2� 3� 4� 5� 6� 7�
8� 9� :� ;� <� =� >� ?�
@� A� B� C� D� E� F� G�
H� I� J� K� L� M� N� O�
P� Q� R� S� T� U� V� W�
X� Y� Z� [� \�]� ^� _�
`� a� b� c� d� e� f� g�
h� i� j� k� l� m� n� o�
p� q� r� s� t� u� v� w�
x� y� z� {� |� }� ~� \177�

0 1 2 3 4 5 6 7
00x
01x
02x
03x
04x
05x
06x
07x
10x
11x
12x
13x
14x
15x
16x
17x

\000� \001� \002� \003� \004� \005� \006� \007�
\b� \t� \n� \011� \f� \r� \016� \017�

\020� \021� \022� \023� \024� \025� \026� \027�
\030� \031� \032� \033� \034� \035� \036� \037�
space� !� "� #� $� %� &� '�
(�)� *� +� ,� -� .� /�
0� 1� 2� 3� 4� 5� 6� 7�
8� 9� :� ;� <� =� >� ?�
@� A� B� C� D� E� F� G�
H� I� J� K� L� M� N� O�
P� Q� R� S� T� U� V� W�
X� Y� Z� [� \�]� ^� _�
`� a� b� c� d� e� f� g�
h� i� j� k� l� m� n� o�
p� q� r� s� t� u� v� w�
x� y� z� {� |� }� ~� \177�

Hardware Support for Characters

01100001=97�

a

– 3 –

Implementing Bits
•� If you want to implement a bit inside a computer, you need to

come up with a mechanism that
–� Can exist in either of two states.
–� Allows other parts of the computer to read the state.
–� Allows other parts of the computer to write the state.

•� Conceptually, these capabilities are captured by a hardware
unit called a flip-flop, which can exist in either an off or an on
state:

R

S

Q

Q

Switching Circuits

The AND Circuit The OR Circuit

Implementing NOT with Switches Exercise: Controlling Room Lights
•� Suppose you have a room with one light that you want to

control from two switches at opposite ends of the room. How
would you implement this functionality with switches?

– 4 –

Exercise: How Might You Build a Bit?

R

S

Q

Q

A Solution Using a Relay

R

S

Q

Q

R

S

Q

Q

Implementing Switches in Silicon
•� In modern computers, switches are usually implemented in

chips made based on a semiconductor, which is simply a
material (typically some form of silicon) that is conducting in
some circumstances and insulating in others.

•� One of the most common components in today’s computers is
the field-effect transistor (or FET), which you can implement
in semiconductor using a structure that looks like this:

•� Field-effect transistors come in two types. In a n-type FET,
the presence of a charge on the gate allows current to flow
across the transistor as a whole. In a p-type FET, a charge on
the gate inhibits the current flow.

Logic Gates
name� symbol� table� name� symbol� table�

Full Adder Chip Fabrication
The manufacture of a semiconductor chip begins with a
crystal of extremely pure silicon. The silicon itself is
extracted from beach sand and then grown into a
cylindrical ingot in such a way that impurities represent no
more than one of a trillion atoms in the crystal.

– 5 –

Chip Fabrication
The silicon ingot is then sliced into individual wafers,
which are typically 8-12 inches in diameter and less than a
millimeter thick. Each individual wafer is then polished to
remove any irregularities in its surface.

Chip Fabrication
The polished wafer is then heated in the presence of
oxygen to create a thin layer of silicon dioxide (SiO2). The
SiO2 layer is nonconducting, and thereby serves to insulate
the silicon wafer from the various materials that will be
layered above it.

Chip Fabrication
The problem now is to remove just the right parts of the
SiO2 layer to expose the silicon underneath, so that these
regions of the chip can be used as transistors. This phase
of chip fabrication is accomplished using a process called
photolithography.

Chip Fabrication
The first step in the photolithographic process is to coat the
insulated wafer with a layer called photoresist, which
changes its chemical composition when exposed to light.

Chip Fabrication
The pattern to be inscribed on the chip is taken from an
optical template called a mask. The mask looks very much
like an old photographic negative, with the transparent
regions indicating which parts of the chip surface need to
be etched away.

Chip Fabrication
The image on the mask is transferred to the chip surface by
shining ultraviolet light through the mask and then using a
lens to focus the image on the desired area of the chip.

– 6 –

Chip Fabrication
The same pattern is then created in a new position in other
parts of the wafer by repositioning the image. A typical
wafer can hold thousands of identical chips, each of which
can be etched into the wafer simultaneously.

Chip Fabrication
The exposed photoresist is then removed chemically,
exposing the SiO2 layer underneath. A further etching step
removes the SiO2 in the exposed areas, revealing the silicon
layer. The final step in the etching process is to remove the
unexposed photoresist from the wafer.

Chip Fabrication
The next phase in the chip-making process is to introduce
new elements into the silicon wafer to make it
semiconducting. An ion beam bombards the surface with
the doping atoms needed to create n-type and p-type
regions in the exposed silicon wafer.

Chip Fabrication
To complete the fabrication of the chips on the wafer,
additional photolithographic steps are used to lay down
alternating layers of insulators and conductors. The
conductors (typically aluminum and tungsten) create the
wiring pattern for each chip.

Chip Fabrication
Once the wiring is complete, diamond saws cut the wafer
into the individual chips, which are then encased in plastic,
after connecting metallic leads to the appropriate contact
positions on the chip.

Chip Fabrication
The individual chips are then tested to make sure that every
internal circuit works correctly. Given the complexity and
extremely fine tolerances of the manufacturing process,
several of the chips on each wafer typically need to be
discarded.

