
Eric Roberts Handout #11
CS 54N October 17, 2016

Algorithmic Efficiency

Algorithmic Efficiency

Eric Roberts
CS 54N

October 17, 2016

Computational Complexity
•� Informally, computational complexity can be defined as a

measure of the inherent difficulty of a problem, typically
expressed as a functional relationship between the size of a
problem (traditionally denoted by the letter N) and the time
needed to solve that problem.

•� Computational complexity is most easily understood in the
context of some simple examples. The next several slides
look at two problems that are extremely important in practice:

–� Searching—Finding a particular element in an array

–� Sorting—Putting the elements of an array in order

Linear Search
•� The simplest strategy for searching is to start at the beginning

of the array and look at each element in turn. This algorithm
is called linear search.

•� Linear search is straightforward to implement, as illustrated in
the following JavaScript function that returns the first index at
which the value key appears in array, or -1 if it does not
appear at all:

function linearSearch(key, array) {
 for (var i = 0; i < array.length; i++) {
 if (key === array[i]) return i;
 }
 return -1;
}

Searching for Area Codes
•� To illustrate the efficiency of linear search, it is useful to work

with a somewhat larger example.

•� The example on the next slide works with an array containing
many of the area codes assigned to the United States.

•� The specific task in this example is to search this list to find
the area code for the Silicon Valley area, which is 650.

•� The linear search algorithm needs to examine each element in
the array to find the matching value. As the array gets larger,
the number of steps required for linear search grows in the
same proportion.

•� As you watch the slow process of searching for 650 on the
next slide, try to think of a more efficient way in which you
might search this particular array for a given area code.

Linear Search (Area Code Example)

650�

0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14� 15� 16� 17� 18� 19� 20� 21�

22� 23� 24� 25� 26� 27� 28� 29� 30� 31� 32� 33� 34� 35� 36� 37� 38� 39� 40� 41� 42� 43�

44� 45� 46� 47� 48� 49� 50� 51� 52� 53� 54� 55� 56� 57� 58� 59� 60� 61� 62� 63� 64� 65�

66� 67� 68� 69� 70� 71� 72� 73� 74� 75� 76� 77� 78� 79� 80� 81� 82� 83� 84� 85� 86� 87�

88� 89� 90� 91� 92� 93� 94� 95� 96� 97� 98� 99� 100� 101� 102� 103� 104� 105� 106� 107� 108� 109�

110� 111� 112� 113� 114� 115� 116� 117� 118� 119� 120� 121� 122� 123� 124� 125� 126� 127� 128� 129� 130� 131�

132� 133� 134� 135� 136� 137� 138� 139� 140� 141� 142� 143� 144� 145� 146� 147� 148� 149� 150� 151� 152� 153�

154� 155� 156� 157� 158� 159� 160� 161� 162� 163� 164� 165� 166� 167� 168� 169� 170� 171� 172� 173� 174� 175�

176� 177� 178� 179� 180� 181� 182� 183� 184� 185� 186� 187� 188� 189� 190� 191� 192� 193� 194� 195� 196� 197�

198� 199� 200� 201� 202� 203� 204� 205� 206� 207� 208� 209� 210� 211� 212� 213� 214� 215� 216� 217� 218� 219�

220� 221� 222� 223� 224� 225� 226� 227� 228� 229� 230� 231� 232� 233� 234� 235� 236� 237� 238� 239� 240� 241�

242� 243� 244� 245� 246� 247� 248� 249� 250� 251� 252� 253� 254� 255� 256� 257� 258� 259� 260� 261� 262� 263�

264� 265� 266� 267� 268� 269� 270� 271� 272� 273� 274� 275� 276� 277� 278� 279� 280� 281� 282� 283� 284� 285�

201� 202� 203� 205� 206� 207� 208� 209� 210� 212� 213� 214� 215� 216� 217� 218� 219� 224� 225� 228� 229� 231�

234� 239� 240� 248� 251� 252� 253� 254� 256� 260� 262� 267� 269� 270� 276� 281� 283� 301� 302� 303� 304� 305�

307� 308� 309� 310� 312� 313� 314� 315� 316� 317� 318� 319� 320� 321� 323� 325� 330� 331� 334� 336� 337� 339�

347� 351� 352� 360� 361� 364� 385� 386� 401� 402� 404� 405� 406� 407� 408� 409� 410� 412� 413� 414� 415� 416�

417� 419� 423� 424� 425� 430� 432� 434� 435� 440� 443� 445� 469� 470� 475� 478� 479� 480� 484� 501� 502� 503�

504� 505� 507� 508� 509� 510� 512� 513� 515� 516� 517� 518� 520� 530� 540� 541� 551� 559� 561� 562� 563� 564�

567� 570� 571� 573� 574� 575� 580� 585� 586� 601� 602� 603� 605� 606� 607� 608� 609� 610� 612� 614� 615� 616�

617� 618� 619� 620� 623� 626� 630� 631� 636� 641� 646� 660� 661� 662� 678� 682� 701� 702� 703� 704�

706� 707� 708� 712� 713� 714� 715� 716� 717� 718� 719� 720� 724� 727� 731� 732� 734� 740� 754� 757� 760� 762�

763� 765� 769� 770� 772� 773� 774� 775� 779� 781� 785� 786� 801� 802� 803� 804� 805� 806� 808� 810� 812� 813�

814� 815� 816� 817� 818� 828� 830� 831� 832� 835� 843� 845� 847� 848� 850� 856� 857� 858� 859� 860� 862� 863�

864� 865� 870� 878� 901� 903� 904� 906� 907� 908� 909� 910� 912� 913� 914� 915� 916� 917� 918� 919� 920� 925�

928� 931� 936� 937� 940� 941� 947� 949� 951� 952� 954� 956� 959� 970� 971� 972� 973� 978� 979� 980� 985� 989�

651�

Linear search needs to look at 166 elements to find 650.�
The Idea of Binary Search

•� The fact that the area code array is in ascending order makes
it possible to find a particular value much more efficiently.

•� The fundamental insight is that starting at the middle element
gives you more information than starting at the beginning.

•� When you look at the middle element in relation to the value
you’re searching for, there are three possibilities:
–� If the key is greater than the middle element, you can discard

every element in the first half.
–� If the key is less than the middle element, you can discard every

element in the second half.
–� If the key is equal to the middle element, you can stop.

•� You can repeat this process on the elements that remain after
each cycle. Because this algorithm proceeds by dividing the
list in half each time, it is called binary search.

– 2 –

Binary Search (Area Code Example)
Binary search needs to look at only eight elements to find 650.�

650�

0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14� 15� 16� 17� 18� 19� 20� 21�

22� 23� 24� 25� 26� 27� 28� 29� 30� 31� 32� 33� 34� 35� 36� 37� 38� 39� 40� 41� 42� 43�

44� 45� 46� 47� 48� 49� 50� 51� 52� 53� 54� 55� 56� 57� 58� 59� 60� 61� 62� 63� 64� 65�

66� 67� 68� 69� 70� 71� 72� 73� 74� 75� 76� 77� 78� 79� 80� 81� 82� 83� 84� 85� 86� 87�

88� 89� 90� 91� 92� 93� 94� 95� 96� 97� 98� 99� 100� 101� 102� 103� 104� 105� 106� 107� 108� 109�

110� 111� 112� 113� 114� 115� 116� 117� 118� 119� 120� 121� 122� 123� 124� 125� 126� 127� 128� 129� 130� 131�

132� 133� 134� 135� 136� 137� 138� 139� 140� 141� 142� 143� 144� 145� 146� 147� 148� 149� 150� 151� 152� 153�

154� 155� 156� 157� 158� 159� 160� 161� 162� 163� 164� 165� 166� 167� 168� 169� 170� 171� 172� 173� 174� 175�

176� 177� 178� 179� 180� 181� 182� 183� 184� 185� 186� 187� 188� 189� 190� 191� 192� 193� 194� 195� 196� 197�

198� 199� 200� 201� 202� 203� 204� 205� 206� 207� 208� 209� 210� 211� 212� 213� 214� 215� 216� 217� 218� 219�

220� 221� 222� 223� 224� 225� 226� 227� 228� 229� 230� 231� 232� 233� 234� 235� 236� 237� 238� 239� 240� 241�

242� 243� 244� 245� 246� 247� 248� 249� 250� 251� 252� 253� 254� 255� 256� 257� 258� 259� 260� 261� 262� 263�

264� 265� 266� 267� 268� 269� 270� 271� 272� 273� 274� 275� 276� 277� 278� 279� 280� 281� 282� 283� 284� 285�

201� 202� 203� 205� 206� 207� 208� 209� 210� 212� 213� 214� 215� 216� 217� 218� 219� 224� 225� 228� 229� 231�

234� 239� 240� 248� 251� 252� 253� 254� 256� 260� 262� 267� 269� 270� 276� 281� 283� 301� 302� 303� 304� 305�

307� 308� 309� 310� 312� 313� 314� 315� 316� 317� 318� 319� 320� 321� 323� 325� 330� 331� 334� 336� 337� 339�

347� 351� 352� 360� 361� 364� 385� 386� 401� 402� 404� 405� 406� 407� 408� 409� 410� 412� 413� 414� 415� 416�

417� 419� 423� 424� 425� 430� 432� 434� 435� 440� 443� 445� 469� 470� 475� 478� 479� 480� 484� 501� 502� 503�

504� 505� 507� 508� 509� 510� 512� 513� 515� 516� 517� 518� 520� 530� 540� 541� 551� 559� 561� 562� 563� 564�

567� 570� 571� 573� 574� 575� 580� 585� 586� 601� 602� 603� 605� 606� 607� 608� 609� 610� 612� 614� 615� 616�

617� 618� 619� 620� 623� 626� 630� 631� 636� 641� 646� 660� 661� 662� 678� 682� 701� 702� 703� 704�

706� 707� 708� 712� 713� 714� 715� 716� 717� 718� 719� 720� 724� 727� 731� 732� 734� 740� 754� 757� 760� 762�

763� 765� 769� 770� 772� 773� 774� 775� 779� 781� 785� 786� 801� 802� 803� 804� 805� 806� 808� 810� 812� 813�

814� 815� 816� 817� 818� 828� 830� 831� 832� 835� 843� 845� 847� 848� 850� 856� 857� 858� 859� 860� 862� 863�

864� 865� 870� 878� 901� 903� 904� 906� 907� 908� 909� 910� 912� 913� 914� 915� 916� 917� 918� 919� 920� 925�

928� 931� 936� 937� 940� 941� 947� 949� 951� 952� 954� 956� 959� 970� 971� 972� 973� 978� 979� 980� 985� 989�

651�

Efficiency of Linear Search
•� As the area code example makes clear, the running time of the

linear search algorithm depends on the size of the array.

•� The idea that the time required to search a list of values
depends on how many values there are is not at all surprising.
The running time of most algorithms depends on the size of
the problem to which that algorithm is applied.

•� In many applications, it is easy to come up with a numeric
value that specifies the problem size, which is generally
denoted by the letter N. For most array applications, the
problem size is simply the size of the array.

•� In the worst case—which occurs when the value you’re
searching for comes at the end of the array or does not appear
at all—linear search requires N steps. On average, it takes
approximately half that time.

Efficiency of Binary Search

•� On each step, the binary search algorithm rules out half of the
remaining possibilities. In the worst case, the number of steps
is given by how many times you can divide the original size of
the array in half until there is only one element remaining. In
other words, you need to find the value of k for which:

1 = N / 2 / 2 / 2 / 2 . . . / 2

k times

•� You can simplify this formula using basic mathematics:
1 = N / 2k

2k = N
k = log2 N

•� The running time of binary search also depends on the number
of elements, but in a profoundly different way.

Comparing Search Efficiencies
•� The difference in the number of steps required for the two

search algorithms is illustrated by the following table, which
compares the values of N and the closest integer to log2 N:

3
log2 N N

7
10
20
30

10
100

1000
1,000,000

1,000,000,000

•� For large values of N, the difference in the number of steps
required is enormous. If you had to search through a list of a
million elements, binary search would run 50,000 times faster
than linear search. If there were a billion elements, that factor
would grow to 33,000,000.

Sorting
•� Binary search works only on arrays in which the elements are

arranged in order. The process of putting the elements of an
array in order is called sorting.

•� There are many algorithms that one can use to sort an array.
As with searching, these algorithms can vary substantially in
their efficiency, particularly as the arrays become large.

•� Of all the algorithms presented in this text, sorting is by far
the most important in terms of its practical applications.
Alphabetizing a telephone directory, arranging library records
by catalogue number, and organizing a bulk mailing by ZIP
code are all examples of sorting that involve reasonably large
collections of data.

The Selection Sort Algorithm
•� Of the many sorting algorithms, the easiest one to describe is

selection sort, which is implemented by the following code:

 The variables lh and rh indicate the positions of the left and
right hands if you were to carry out this process manually.
The left hand points to each position in turn; the right hand
points to the smallest value in the rest of the array.

function sort(array) {
 for (var lh = 0; lh < array.length; lh++) {
 var rh = findSmallest(array, lh, array.length);
 swapElements(array, lh, rh);
 }
}

•� The method findSmallest(array, p1, p2) returns the index
of the smallest value in the array from position p1 up to but
not including p2. The method swapElements(array, p1, p2)
exchanges the elements at the specified positions.

– 3 –

Simulating Selection Sort
function run() {
 var test = { 809, 503, 946, 367, 987, 838, 259, 236, 659, 361 };
 sort(test);
}

function sort(array) {
 for (var lh = 0 ; lh < array.length ; lh++) {
 var rh = findSmallest(array, lh, array.length);
 swapElements(array, lh, rh);
 }
}

rh array lh

0 1 2 3 4 5 6 7 8 9

809 503 946 367 987 838 259 236 659 361

The Efficiency of Selection Sort
•� The computational complexity of an algorithm is typically

typically proportional to the number of times the most
frequent operation is executed. In selection sort, this
operation is the body of loop in findSmallest. The number
of cycles in this loop changes as the algorithm proceeds:

N values are considered on the first call to findSmallest.
N - 1 values are considered on the second call.
N - 2 values are considered on the third call, and so on.

•� In mathematical notation, the number of values considered in
findSmallest can be expressed as a summation, which can
then be transformed into a simple formula:

��
i = 1

N
i 1 + 2 + 3 + . . . + (N - 1) + N = =

N x (N + 1)
2

Quadratic Growth
•� The following table shows the value of for various

values of N:

55
N

5050
500,500

50,005,000

10
100

1000
10000

N x (N + 1)
2

N x (N + 1)
2

•� The growth pattern in the right column is similar to that of the
measured running time of the selection sort algorithm. As the
x N x (N + 1)

2 value of N increases by a factor of 10, the value of
xx increases by a factor of around 100, which is 102. Algorithms
whose running times increase in proportion to the square of
the problem size are said to be quadratic.

Sorting Punched Cards
From the 1880 census onward,
information was often stored on
punched cards like the one shown
at the right, in which the number
236 has been punched in the first
three columns.

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

. . . 1�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

2�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

3�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

4�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

5�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

6�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

7�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

8�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

9�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

10�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

11�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

12�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

13�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

14�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

15�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

16�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

17�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

18�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

19�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

20�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

21�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

22�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

23�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

24�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

25�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

78�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

79�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

80�

The IBM 083 Sorter�

Computer companies built machines
to sort stacks of punched cards, such
as the IBM 083 sorter on the left.
The stack of cards was loaded in a
large hopper at the right end of the
machine, and the cards would then
be distributed into the various bins
on the front of the sorter according
to what value was punched in a
particular column.

The Radix Sort Algorithm
•� The IBM 083 sorter outperforms selection sort by using an

algorithm called radix sort that requires the following steps:
Set the machine so that it sorts on the last digit of the number. 1.
Put the entire stack of cards in the hopper. 2.
Run the machine so that the cards are distributed into the bins. 3.
Put the cards from the bins back in the hopper, making sure that
the cards from the 0 bin are on the bottom, the cards from the 1
bin come on top of those, and so on.

4.

Reset the machine so that it sorts on the preceding digit. 5.
Repeat steps 3 through 5 until all the digits are processed. 6.

•� The next slide illustrates this process for a set of three-digit
numbers.

Comparing N

2 and N log N
•� Radix sort runs in time proportional to the number of values

times the number of digits, which is bounded by N log N.

1,000,000 1,000,000,000,000 19,931,569

100,000 10,000,000,000 1,660,964

10,000 100,000,000 132,877

1,000 1,000,000 9,966

100 10,000 664

10 100 33

N
2 N log N N

•� The difference between N
2 and N log N can be enormous for

large values of N, as shown in this table:

– 4 –

Big-O Notation
•� The most common way to express computational complexity

is to use big-O notation, which was introduced by the German
mathematician Paul Bachmann in 1892.

•� Big-O notation consists of the letter O followed by a formula
that offers a qualitative assessment of running time as a
function of the problem size, traditionally denoted as N. For
example, the computational complexity of linear search is

O (N)
 and the computational complexity of selection sort is

O (N
2

)

•� If you read these formulas aloud, you would pronounce them
as “big-O of N ” and “big-O of N

2
 ” respectively.

Standard Complexity Classes

exponential O(2N) Trying every path in a branching structure

cubic O(N
3) Obvious algorithms for matrix multiplication

quadratic O(N
2) Selection sort

N log N O(N log N) Radix sort

linear O(N) Summing a vector; linear search

logarithmic O(log N) Binary search in a sorted vector

constant O(1) Finding first element in a vector

•� The complexity of a particular algorithm tends to fall into one
of a small number of standard complexity classes:

•� In general, theoretical computer scientists regard any problem
whose complexity cannot be expressed as a polynomial as
intractable.

Graphs of the Complexity Classes

ru
nn

in
g

tim
e�

problem size�

