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Computational Complexity 
•� Informally, computational complexity can be defined as a 

measure of the inherent difficulty of a problem, typically 
expressed as a functional relationship between the size of a 
problem (traditionally denoted by the letter N) and the time 
needed to solve that problem. 

•� Computational complexity is most easily understood in the 
context of some simple examples.  The next several slides 
look at two problems that are extremely important in practice: 

–� Searching—Finding a particular element in an array 

–� Sorting—Putting the elements of an array in order 

Linear Search 
•� The simplest strategy for searching is to start at the beginning 

of the array and look at each element in turn.  This algorithm 
is called linear search. 

•� Linear search is straightforward to implement, as illustrated in 
the following JavaScript function that returns the first index at 
which the value key appears in array, or -1 if it does not 
appear at all: 

function linearSearch(key, array) { 
   for (var i = 0; i < array.length; i++) { 
      if (key === array[i]) return i; 
   } 
   return -1; 
} 

Searching for Area Codes 
•� To illustrate the efficiency of linear search, it is useful to work 

with a somewhat larger example. 

•� The example on the next slide works with an array containing 
many of the area codes assigned to the United States. 

•� The specific task in this example is to search this list to find 
the area code for the Silicon Valley area, which is 650. 

•� The linear search algorithm needs to examine each element in 
the array to find the matching value.  As the array gets larger, 
the number of steps required for linear search grows in the 
same proportion. 

•� As you watch the slow process of searching for 650 on the 
next slide, try to think of a more efficient way in which you 
might search this particular array for a given area code.  

Linear Search (Area Code Example) 

650�

0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14� 15� 16� 17� 18� 19� 20� 21�

22� 23� 24� 25� 26� 27� 28� 29� 30� 31� 32� 33� 34� 35� 36� 37� 38� 39� 40� 41� 42� 43�

44� 45� 46� 47� 48� 49� 50� 51� 52� 53� 54� 55� 56� 57� 58� 59� 60� 61� 62� 63� 64� 65�

66� 67� 68� 69� 70� 71� 72� 73� 74� 75� 76� 77� 78� 79� 80� 81� 82� 83� 84� 85� 86� 87�

88� 89� 90� 91� 92� 93� 94� 95� 96� 97� 98� 99� 100� 101� 102� 103� 104� 105� 106� 107� 108� 109�

110� 111� 112� 113� 114� 115� 116� 117� 118� 119� 120� 121� 122� 123� 124� 125� 126� 127� 128� 129� 130� 131�

132� 133� 134� 135� 136� 137� 138� 139� 140� 141� 142� 143� 144� 145� 146� 147� 148� 149� 150� 151� 152� 153�

154� 155� 156� 157� 158� 159� 160� 161� 162� 163� 164� 165� 166� 167� 168� 169� 170� 171� 172� 173� 174� 175�

176� 177� 178� 179� 180� 181� 182� 183� 184� 185� 186� 187� 188� 189� 190� 191� 192� 193� 194� 195� 196� 197�

198� 199� 200� 201� 202� 203� 204� 205� 206� 207� 208� 209� 210� 211� 212� 213� 214� 215� 216� 217� 218� 219�

220� 221� 222� 223� 224� 225� 226� 227� 228� 229� 230� 231� 232� 233� 234� 235� 236� 237� 238� 239� 240� 241�

242� 243� 244� 245� 246� 247� 248� 249� 250� 251� 252� 253� 254� 255� 256� 257� 258� 259� 260� 261� 262� 263�

264� 265� 266� 267� 268� 269� 270� 271� 272� 273� 274� 275� 276� 277� 278� 279� 280� 281� 282� 283� 284� 285�

201� 202� 203� 205� 206� 207� 208� 209� 210� 212� 213� 214� 215� 216� 217� 218� 219� 224� 225� 228� 229� 231�

234� 239� 240� 248� 251� 252� 253� 254� 256� 260� 262� 267� 269� 270� 276� 281� 283� 301� 302� 303� 304� 305�

307� 308� 309� 310� 312� 313� 314� 315� 316� 317� 318� 319� 320� 321� 323� 325� 330� 331� 334� 336� 337� 339�

347� 351� 352� 360� 361� 364� 385� 386� 401� 402� 404� 405� 406� 407� 408� 409� 410� 412� 413� 414� 415� 416�

417� 419� 423� 424� 425� 430� 432� 434� 435� 440� 443� 445� 469� 470� 475� 478� 479� 480� 484� 501� 502� 503�

504� 505� 507� 508� 509� 510� 512� 513� 515� 516� 517� 518� 520� 530� 540� 541� 551� 559� 561� 562� 563� 564�

567� 570� 571� 573� 574� 575� 580� 585� 586� 601� 602� 603� 605� 606� 607� 608� 609� 610� 612� 614� 615� 616�

617� 618� 619� 620� 623� 626� 630� 631� 636� 641� 646� 660� 661� 662� 678� 682� 701� 702� 703� 704�

706� 707� 708� 712� 713� 714� 715� 716� 717� 718� 719� 720� 724� 727� 731� 732� 734� 740� 754� 757� 760� 762�

763� 765� 769� 770� 772� 773� 774� 775� 779� 781� 785� 786� 801� 802� 803� 804� 805� 806� 808� 810� 812� 813�

814� 815� 816� 817� 818� 828� 830� 831� 832� 835� 843� 845� 847� 848� 850� 856� 857� 858� 859� 860� 862� 863�

864� 865� 870� 878� 901� 903� 904� 906� 907� 908� 909� 910� 912� 913� 914� 915� 916� 917� 918� 919� 920� 925�

928� 931� 936� 937� 940� 941� 947� 949� 951� 952� 954� 956� 959� 970� 971� 972� 973� 978� 979� 980� 985� 989�

651�

Linear search needs to look at 166 elements to find 650.�
The Idea of Binary Search 

•� The fact that the area code array is in ascending order makes 
it possible to find a particular value much more efficiently. 

•� The fundamental insight is that starting at the middle element 
gives you more information than starting at the beginning. 

•� When you look at the middle element in relation to the value 
you’re searching for, there are three possibilities: 
–� If the key is greater than the middle element, you can discard 

every element in the first half. 
–� If the key is less than the middle element, you can discard every 

element in the second half. 
–� If the key is equal to the middle element, you can stop. 

•� You can repeat this process on the elements that remain after 
each cycle.  Because this algorithm proceeds by dividing the 
list in half each time, it is called binary search.  
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Binary Search (Area Code Example) 
Binary search needs to look at only eight elements to find 650.�

650�

0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14� 15� 16� 17� 18� 19� 20� 21�

22� 23� 24� 25� 26� 27� 28� 29� 30� 31� 32� 33� 34� 35� 36� 37� 38� 39� 40� 41� 42� 43�

44� 45� 46� 47� 48� 49� 50� 51� 52� 53� 54� 55� 56� 57� 58� 59� 60� 61� 62� 63� 64� 65�

66� 67� 68� 69� 70� 71� 72� 73� 74� 75� 76� 77� 78� 79� 80� 81� 82� 83� 84� 85� 86� 87�

88� 89� 90� 91� 92� 93� 94� 95� 96� 97� 98� 99� 100� 101� 102� 103� 104� 105� 106� 107� 108� 109�

110� 111� 112� 113� 114� 115� 116� 117� 118� 119� 120� 121� 122� 123� 124� 125� 126� 127� 128� 129� 130� 131�

132� 133� 134� 135� 136� 137� 138� 139� 140� 141� 142� 143� 144� 145� 146� 147� 148� 149� 150� 151� 152� 153�

154� 155� 156� 157� 158� 159� 160� 161� 162� 163� 164� 165� 166� 167� 168� 169� 170� 171� 172� 173� 174� 175�

176� 177� 178� 179� 180� 181� 182� 183� 184� 185� 186� 187� 188� 189� 190� 191� 192� 193� 194� 195� 196� 197�

198� 199� 200� 201� 202� 203� 204� 205� 206� 207� 208� 209� 210� 211� 212� 213� 214� 215� 216� 217� 218� 219�

220� 221� 222� 223� 224� 225� 226� 227� 228� 229� 230� 231� 232� 233� 234� 235� 236� 237� 238� 239� 240� 241�

242� 243� 244� 245� 246� 247� 248� 249� 250� 251� 252� 253� 254� 255� 256� 257� 258� 259� 260� 261� 262� 263�

264� 265� 266� 267� 268� 269� 270� 271� 272� 273� 274� 275� 276� 277� 278� 279� 280� 281� 282� 283� 284� 285�

201� 202� 203� 205� 206� 207� 208� 209� 210� 212� 213� 214� 215� 216� 217� 218� 219� 224� 225� 228� 229� 231�

234� 239� 240� 248� 251� 252� 253� 254� 256� 260� 262� 267� 269� 270� 276� 281� 283� 301� 302� 303� 304� 305�

307� 308� 309� 310� 312� 313� 314� 315� 316� 317� 318� 319� 320� 321� 323� 325� 330� 331� 334� 336� 337� 339�

347� 351� 352� 360� 361� 364� 385� 386� 401� 402� 404� 405� 406� 407� 408� 409� 410� 412� 413� 414� 415� 416�

417� 419� 423� 424� 425� 430� 432� 434� 435� 440� 443� 445� 469� 470� 475� 478� 479� 480� 484� 501� 502� 503�

504� 505� 507� 508� 509� 510� 512� 513� 515� 516� 517� 518� 520� 530� 540� 541� 551� 559� 561� 562� 563� 564�

567� 570� 571� 573� 574� 575� 580� 585� 586� 601� 602� 603� 605� 606� 607� 608� 609� 610� 612� 614� 615� 616�

617� 618� 619� 620� 623� 626� 630� 631� 636� 641� 646� 660� 661� 662� 678� 682� 701� 702� 703� 704�

706� 707� 708� 712� 713� 714� 715� 716� 717� 718� 719� 720� 724� 727� 731� 732� 734� 740� 754� 757� 760� 762�

763� 765� 769� 770� 772� 773� 774� 775� 779� 781� 785� 786� 801� 802� 803� 804� 805� 806� 808� 810� 812� 813�

814� 815� 816� 817� 818� 828� 830� 831� 832� 835� 843� 845� 847� 848� 850� 856� 857� 858� 859� 860� 862� 863�

864� 865� 870� 878� 901� 903� 904� 906� 907� 908� 909� 910� 912� 913� 914� 915� 916� 917� 918� 919� 920� 925�

928� 931� 936� 937� 940� 941� 947� 949� 951� 952� 954� 956� 959� 970� 971� 972� 973� 978� 979� 980� 985� 989�

651�

Efficiency of Linear Search 
•� As the area code example makes clear, the running time of the 

linear search algorithm depends on the size of the array. 

•� The idea that the time required to search a list of values 
depends on how many values there are is not at all surprising.  
The running time of most algorithms depends on the size of 
the problem to which that algorithm is applied. 

•� In many applications, it is easy to come up with a numeric 
value that specifies the problem size, which is generally 
denoted by the letter N.  For most array applications, the 
problem size is simply the size of the array. 

•� In the worst case—which occurs when the value you’re 
searching for comes at the end of the array or does not appear 
at all—linear search requires N steps.  On average, it takes 
approximately half that time. 

Efficiency of Binary Search 

•� On each step, the binary search algorithm rules out half of the 
remaining possibilities.  In the worst case, the number of steps 
is given by how many times you can divide the original size of 
the array in half until there is only one element remaining.  In 
other words, you need to find the value of k for which: 

1  =  N  /  2  /  2  /  2  /  2  . . .   /  2 

k times 

•� You can simplify this formula using basic mathematics: 
1  =  N  /  2k 

2k  =  N 
k  =  log2 N 

•� The running time of binary search also depends on the number 
of elements, but in a profoundly different way. 

Comparing Search Efficiencies 
•� The difference in the number of steps required for the two 

search algorithms is illustrated by the following table, which 
compares the values of N and the closest integer to log2 N: 

3       
log2 N N 

7       
10       
20       
30       

10 
100 

1000 
1,000,000 

1,000,000,000 

•� For large values of N, the difference in the number of steps 
required is enormous.  If you had to search through a list of a 
million elements, binary search would run 50,000 times faster 
than linear search.  If there were a billion elements, that factor 
would grow to 33,000,000. 

Sorting 
•� Binary search works only on arrays in which the elements are 

arranged in order.  The process of putting the elements of an 
array in order is called sorting. 

•� There are many algorithms that one can use to sort an array.  
As with searching, these algorithms can vary substantially in 
their efficiency, particularly as the arrays become large.   

•� Of all the algorithms presented in this text, sorting is by far 
the most important in terms of its practical applications.  
Alphabetizing a telephone directory, arranging library records 
by catalogue number, and organizing a bulk mailing by ZIP 
code are all examples of sorting that involve reasonably large 
collections of data.  

The Selection Sort Algorithm 
•� Of the many sorting algorithms, the easiest one to describe is 

selection sort, which is implemented by the following code: 

 The variables lh and rh indicate the positions of the left and 
right hands if you were to carry out this process manually.  
The left hand points to each position in turn; the right hand 
points to the smallest value in the rest of the array. 

function sort(array) { 
   for (var lh = 0; lh < array.length; lh++) { 
      var rh = findSmallest(array, lh, array.length); 
      swapElements(array, lh, rh); 
   } 
} 

•� The method findSmallest(array, p1, p2) returns the index 
of the smallest value in the array from position p1 up to but 
not including p2.  The method swapElements(array, p1, p2) 
exchanges the elements at the specified positions. 
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Simulating Selection Sort  
function run() { 
   var test = { 809, 503, 946, 367, 987, 838, 259, 236, 659, 361 }; 
   sort(test); 
} 

function sort(array) { 
   for ( var lh = 0 ; lh < array.length ; lh++ ) { 
      var rh = findSmallest(array, lh, array.length); 
      swapElements(array, lh, rh); 
   } 
} 

rh array lh 

0 1 2 3 4 5 6 7 8 9 

809 503 946 367 987 838 259 236 659 361 

The Efficiency of Selection Sort 
•� The computational complexity of an algorithm is typically 

typically proportional to the number of times the most 
frequent operation is executed.  In selection sort, this 
operation is the body of loop in findSmallest.  The number 
of cycles in this loop changes as the algorithm proceeds: 

N values are considered on the first call to findSmallest.  
N - 1 values are considered on the second call.  
N - 2 values are considered on the third call, and so on.  

•� In mathematical notation, the number of values considered in  
findSmallest can be expressed as a summation, which can 
then be transformed into a simple formula: 

��
i = 1 

N
i 1  +  2  +  3  +  . . .  +  (N - 1)  +  N   =    =   

N x (N + 1)  
2  

Quadratic Growth 
•� The following table shows the value of          for various 

values of N: 

55 
N 

5050 
500,500 

50,005,000 

10 
100 

1000 
10000 

N  x (N + 1)  
2  

N  x (N + 1)  
2  

•� The growth pattern in the right column is similar to that of the 
measured running time of the selection sort algorithm.  As the 
x N  x (N + 1)  

2   value  of   N  increases  by  a  factor  of  10, the  value   of  
xx  increases by a factor of around 100, which is 102.  Algorithms 
whose running times increase in proportion to the square of 
the problem size are said to be quadratic. 

Sorting Punched Cards 
From the 1880 census onward, 
information was often stored on 
punched cards like the one shown 
at the right, in which the number 
236 has been punched in the first 
three columns. 

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

. . . 1�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

2�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

3�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

4�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

5�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

6�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

7�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

8�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

9�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

10�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

11�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

12�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

13�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

14�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

15�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

16�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

17�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

18�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

19�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

20�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

21�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

22�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

23�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

24�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

25�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

78�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

79�

0�
1�
2�
3�
4�
5�
6�
7�
8�
9�

80�

The IBM 083 Sorter�

Computer companies built machines 
to sort stacks of punched cards, such 
as the IBM 083 sorter on the left.  
The stack of cards was loaded in a 
large hopper at the right end of the 
machine, and the cards would then 
be distributed into the various bins 
on the front of the sorter according 
to what value was punched in a 
particular column.  

The Radix Sort Algorithm 
•� The IBM 083 sorter outperforms selection sort by using an 

algorithm called radix sort that requires the following steps: 
Set the machine so that it sorts on the last digit of the number. 1. 
Put the entire stack of cards in the hopper. 2. 
Run the machine so that the cards are distributed into the bins. 3. 
Put the cards from the bins back in the hopper, making sure that 
the cards from the 0 bin are on the bottom, the cards from the 1 
bin come on top of those, and so on. 

4. 

Reset the machine so that it sorts on the preceding digit. 5. 
Repeat steps 3 through 5 until all the digits are processed. 6. 

•� The next slide illustrates this process for a set of three-digit 
numbers. 

Comparing N 

2 and N log N 
•� Radix sort runs in time proportional to the number of values 

times the number of digits, which is bounded by N log N. 

1,000,000 1,000,000,000,000 19,931,569 

100,000 10,000,000,000 1,660,964 

10,000 100,000,000 132,877 

1,000 1,000,000 9,966 

100 10,000 664 

10 100 33 

N 
2 N log N N 

•� The difference between N 
2 and N log N can be enormous for 

large values of N, as shown in this table: 
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Big-O Notation 
•� The most common way to express computational complexity 

is to use big-O notation, which was introduced by the German 
mathematician Paul Bachmann in 1892. 

•� Big-O notation consists of the letter O followed by a formula 
that offers a qualitative assessment of running time as a 
function of the problem size, traditionally denoted as N.  For 
example, the computational complexity of linear search is  

O ( N ) 
 and the computational complexity of selection sort is 

O ( N   
2

 ) 

•� If you read these formulas aloud, you would pronounce them 
as “big-O of N ” and “big-O of N  

2
  ” respectively. 

Standard Complexity Classes 

exponential O(2N) Trying every path in a branching structure 

cubic O(N 
3) Obvious algorithms for matrix multiplication 

quadratic O(N 
2) Selection sort 

N log N O(N log N) Radix sort 

linear O(N) Summing a vector; linear search 

logarithmic O(log N) Binary search in a sorted vector 

constant O(1) Finding first element in a vector 

•� The complexity of a particular algorithm tends to fall into one 
of a small number of standard complexity classes: 

•� In general, theoretical computer scientists regard any problem 
whose complexity cannot be expressed as a polynomial as 
intractable. 

Graphs of the Complexity Classes 
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