
Eric Roberts Handout #15
CS 54N October 24, 2016

Uncomputable Functions

Uncomputable Functions

Eric Roberts
CS 54N

October 24, 2016

0� 0� 0� 0� 0� 0� 0� 1� 1� 1� 0�0� 1� 1� 1�

1�
2�
3�

0� 1�
1R2� 1L0�
0R3� 1R2�
1L3� 1L1�

The Busy Beaver Problem

Tibor Radó (1895-1965)�

•� Although it is possible to introduce the
notion of undecidable problems using
Turing’s original argument involving a
“universal” Turing machine, it is much
easier to do so in the context of a more
recent problem posed by Tibor Radó in
the early 1960s:

What is the largest finite number of 1s
that can be produced on blank tape using
a Turing machine with n states?

•� This problem is called the Busy Beaver Problem.

The Function BB(n)
•� The Busy Beaver problem has a natural expression as a

mathematical function. If n represents the number of states,
let BB(n) represent the largest finite number of 1s that can be
written on blank tape by a machine of that size.

•� For very small values on n, it is fairly easy to determine the
value of the BB function:

BB(1) = 1
BB(2) = 4
BB(3) = 6

•� From there, the situation gets much harder. Proving that
BB(4) = 13 was a Ph.D. thesis. No one is yet sure of the
values for any higher number, although conjectures exist for
BB(5) and BB(6).

Known Bounds for BB(n)

1 2 3 4 5 6 7

1
2
3
4
5
6
7
8
9

10
11
12
13
14

at
 le

as
t 4

09
8

at
 le

as
t 3

.5
 ×

 10
18

26
7

Computing BB(n)
•� Given that BB(n) is a mathematical function, it makes sense

to ask whether that function can be computed by a Turing
machine. In other words, is there a machine MBB that takes a
number of 1s representing n as input and writes out a number
of 1s representing BB(n) as output?

•� It turns out that the answer is no. There is no Turing machine
MBB that computes the BB function. What’s more, we’ll be
able to prove that such a function cannot be computed at all.

•� The BB function is an example of an uncomputable function,
which is the profound new idea that Alan Turing and several
of his contemporaries introduced to the mathematical world.

Observations about BB(n)
•� In order to resolve the question about whether BB(n) can be

computed by a Turing machine, it helps to make two
observations about the BB function:

BB(n) is a well-defined mathematical function. It does exist.
For every number of states, the number of possible Turing
machines is finite. There must be some machine that writes out
at least as many 1s as any other.

1.

BB(n) must be strictly increasing. With an extra state, it is
always possible to write at least one more 1 than is possible
with a Turing machine with fewer states.

2.

– 2 –

Proof by Contradiction
•� In seeking to prove that BB(n) is not computable by a Turing

machine, the simplest approach is to employ a strategy called
proof by contradiction. In proof by contradiction, you start
by assuming the opposite of what you wish to prove, and then
show—typically by constructing a specific example—that
doing so leads to an absurd conclusion or that violates one of
the assumptions. If the steps in your construction are correct,
the only questionable part of the process is the original
assumption.

•� Thus, to prove that BB(n) is not computable by a Turing
machine, we start by assuming that it is. That means that we
can assume the existence of a machine MBB with � states that
takes n as input and writes out BB(n) 1s as output.

•� The essence of the contradiction is to construct a machine
with k states that writes out more than BB(k) 1s.

Steps in the Proof
number of�

states�
total number of�
1s generated�

M +�

M +7

M ×2

M BB

M ++

� �

7 � + 7

6 2� + 14

� BB(2� + 14)

1 BB(2� + 14) + 1

 2� + 14

But Wait . . . Why Can’t You . . .
•� Despite the proof by contradiction, the idea that BB(n) is

uncomputable seems wrong. After all, we can simulate a
Turing machine. Why isn’t it possible to solve this problem
using the following approach:

Generate every Turing machine with n states. There is only a
finite number of such machines.

1.

For each machine, run the Turing machine simulator and count
the number of 1s it generates.

2.

Keep track of the largest value so far and report that number at
the end of the run.

3.

•� There is a problem here. Some of the machines go on forever,
so there is no way to terminate the computation in step 2.

•� If it were possible to tell whether a Turing machine would
halt, it would be possible to compute the BB(n) function.

/*
 * File: Paradox.js
 * ----------------
 * This program uses the assumption that doesProgramHalt exists to
 * generate a paradox.
 */

function paradox() {
 if (doesProgramHalt("Paradox.js")) {
 Console.println("The program runs forever.");
 while (true) {
 /* Loop forever doing nothing */
 }
 } else {
 Console.println("The program halts.");
 }
}

/*
 * Reads the code stored in the named file and determines whether the first
 * function in that file halts, returning true or false accordingly.
 */

function doesProgramHalt(filename) {

}

The Halting Problem in JavaScript

The Church-Turing Thesis
•� The question of what is computable by a

Turing machine is important in a search
for what is generally computable mostly
because no one has ever found a more
powerful model.

•� Most computer scientists believe what
has come to be known as the Church-
Turing thesis:

No method of computation carried out
by a mechanical process can be more
powerful than a Turing machine.

•� This claim remains a conjecture, and it is not clear there is any
way to prove it. At the same time, it has so far resisted all
efforts to disprove it.

Alonzo Church (1903-1995)�

The Power of Computational Models

•� When computer scientists talk about the power of a particular
computational model, the focus is on what computations are
possible using that model and not on questions of efficiency.

•� Although simple models like the Turing machine run slowly,
it seems that they can solve exactly the same set of problems
that we can solve by any other computational model, even if
that other model initially seems far more advanced.

•� The usual strategy for proving that two computational models
are equivalent is to come up with a strategy for transforming a
arbitrary problem that uses the more advanced model into an
equivalent problem that uses the less advanced one. This
approach is called reduction.

The mills of the gods grind slowly, but they grind exceedingly fine.
—Sextus Empiricus, 2nd century C.E.

– 3 –

Tiling Problems
•� The notion of undecidability comes up in many different

contexts, most of which seem completely unrelated to the idea
of Turing machines.

•� One particularly interesting application appears if you try to
answer the question of whether a set of tiles—constrained by
rules that the colors on their edges have to match—can be
positioned so that they completely fill the plane.

•� Tiling problems gained some mathematical attention in the
1970s when Roger Penrose, Professor of Mathematics at
Oxford developed a set of tiles that would tile the plane but
only in a nonperiodic fashion.

Penrose Tilings

Penrose Tilings Nonperiodic Islamic Tilings

Mosaic from the Darb-i Imam shrine, Isfahan, Iran, 15c

Uncomputability of Tiling
•� One of the surprising mathematical results of the 20th century

is that the question of whether a set of tiles will cover the
plane is uncomputable.

•� The strategy for proving this result uses tiles to simulate a
Turing machine, configuring the tiles in such a way that the
tiles cover the complete plane only if that Turing machine
runs forever starting on blank tape. Since the halting problem
is undecidable, the tiling problem must be undecidable also.

•� In the remaining time, I will sketch the proof of a slightly
simpler result, in which the set of tiles contains a designated
start tile that must occur somewhere in the pattern:

0�
s1

Simulating a Turing Machine in Tiles
•� Suppose that your set starts with the following six tile types:

0�
s1

0� 0�

0� 0�

•� How far could you get if you start by placing the start tile?

– 4 –

Getting Started

0�
s1

0�0� 0�0� 0�0�

0�
A�

0�
s1

start�

0�
B�

0�
C�

0�
D�

Getting Started

0�
s1

0�0� 0�0� 0�0�
. . .

0�
A�

0�
s1

start�

0�
B�

0�
C�

0�
D� E�

Simulating a 1R1 Instruction

0�
s1

0�0� 0�0� 0�0�

. . .

0�
A�

0�
s1

start�

0�
B�

0�
C�

0�
D� E�

1� 0�
s1

0� 0�0�0�0�

1�
F�

0�
H�

0�
s1

G�

0�
I�

0�
J�

0�
K�

Completing the Tiling

0�
A�

0�
s1

start�

0�
B�

0�
C�

0�
D� E�

0�
s1

0�0� 0�0� 0�0�

. 1� 0�
s1

0� 0�0�0�0�

1�
F�

0�
H�

0�
s1

G�

0�
I�

0�
J�

0�
K�

1�
L�

1� 0�
s1

0�1�0�0�0�

Removing the Origin Constraint
•� Requiring a special start tile

makes it easier to prove that
tiling is uncomputable.

•� You can eliminate the start
tile by embedding the Turing
machine simulation inside a
Sierpinski triangle in which
the computation is replicated
at different scales.

