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The Busy Beaver Problem 

Tibor Radó (1895-1965)�

•� Although it is possible to introduce the 
notion of undecidable problems using 
Turing’s original argument involving a 
“universal” Turing machine, it is much 
easier to do so in the context of a more 
recent problem posed by Tibor Radó in 
the early 1960s: 

What is the largest finite number of 1s 
that can be produced on blank tape using 
a Turing machine with n states? 

•� This problem is called the Busy Beaver Problem. 

The Function BB(n) 
•� The Busy Beaver problem has a natural expression as a 

mathematical function.  If n represents the number of states, 
let BB(n) represent the largest finite number of 1s that can be 
written on blank tape by a machine of that size. 

•� For very small values on n, it is fairly easy to determine the 
value of the BB function: 

BB(1)  =  1 
BB(2)  =  4 
BB(3)  =  6 

•� From there, the situation gets much harder.  Proving that     
BB(4) = 13 was a Ph.D. thesis.  No one is yet sure of the 
values for any higher number, although conjectures exist for 
BB(5) and BB(6). 

Known Bounds for BB(n) 
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Computing BB(n) 
•� Given that BB(n) is a mathematical function, it makes sense 

to ask whether that function can be computed by a Turing 
machine.  In other words, is there a machine MBB that takes a 
number of 1s representing n as input and writes out a number 
of 1s representing BB(n) as output? 

•� It turns out that the answer is no.  There is no Turing machine 
MBB that computes the BB function.  What’s more, we’ll be 
able to prove that such a function cannot be computed at all. 

•� The BB function is an example of an uncomputable function, 
which is the profound new idea that Alan Turing and several 
of his contemporaries introduced to the mathematical world. 

Observations about BB(n) 
•� In order to resolve the question about whether BB(n) can be 

computed by a Turing machine, it helps to make two 
observations about the BB function: 

BB(n) is a well-defined mathematical function.  It does exist.   
For every number of states, the number of possible Turing 
machines is finite.  There must be some machine that writes out 
at least as many 1s as any other. 

1. 

BB(n) must be strictly increasing.  With an extra state, it is 
always possible to write at least one more 1 than is possible 
with a Turing machine with fewer states. 

2. 
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Proof by Contradiction 
•� In seeking to prove that BB(n) is not computable by a Turing 

machine, the simplest approach is to employ a strategy called 
proof by contradiction.  In proof by contradiction, you start 
by assuming the opposite of what you wish to prove, and then 
show—typically by constructing a specific example—that 
doing so leads to an absurd conclusion or that violates one of 
the assumptions.  If the steps in your construction are correct, 
the only questionable part of the process is the original 
assumption. 

•� Thus, to prove that BB(n) is not computable by a Turing 
machine, we start by assuming that it is.  That means that we 
can assume the existence of a machine MBB with � states that 
takes n as input and writes out BB(n) 1s as output. 

•� The essence of the contradiction is to construct a machine 
with k states that writes out more than BB(k) 1s. 

Steps in the Proof 
number of�

states�
total number of�
1s generated�

M +� 

M +7 

M ×2 

M BB 

M ++ 

� � 

7 � + 7 

6  2� + 14 

�  BB(2� + 14) 

1  BB(2� + 14) + 1 

 2� + 14 

But Wait . . . Why Can’t You . . . 
•� Despite the proof by contradiction, the idea that BB(n) is 

uncomputable seems wrong.  After all, we can simulate a 
Turing machine.  Why isn’t it possible to solve this problem 
using the following approach: 

Generate every Turing machine with n states.  There is only a 
finite number of such machines. 

1. 

For each machine, run the Turing machine simulator and count 
the number of 1s it generates. 

2. 

Keep track of the largest value so far and report that number at 
the end of the run. 

3. 

•� There is a problem here.  Some of the machines go on forever, 
so there is no way to terminate the computation in step 2.  

•� If it were possible to tell whether a Turing machine would 
halt, it would be possible to compute the BB(n) function. 

/* 
 * File: Paradox.js 
 * ---------------- 
 * This program uses the assumption that doesProgramHalt exists to 
 * generate a paradox. 
 */ 

function paradox() { 
   if (doesProgramHalt("Paradox.js")) { 
      Console.println("The program runs forever."); 
      while (true) { 
         /* Loop forever doing nothing */ 
      } 
   } else { 
      Console.println("The program halts."); 
   } 
} 

/* 
 * Reads the code stored in the named file and determines whether the first 
 * function in that file halts, returning true or false accordingly. 
 */ 

function doesProgramHalt(filename) { 

} 

The Halting Problem in JavaScript 

The Church-Turing Thesis 
•� The question of what is computable by a 

Turing machine is important in a search 
for what is generally computable mostly 
because no one has ever found a more 
powerful model. 

•� Most computer scientists believe what 
has come to be known as the Church-
Turing thesis: 

No method of computation carried out 
by a mechanical process can be more 
powerful than a Turing machine. 

•� This claim remains a conjecture, and it is not clear there is any 
way to prove it.  At the same time, it has so far resisted all 
efforts to disprove it. 

Alonzo Church (1903-1995)�

The Power of Computational Models 

•� When computer scientists talk about the power of a particular 
computational model, the focus is on what computations are 
possible using that model and not on questions of efficiency. 

•� Although simple models like the Turing machine run slowly, 
it seems that they can solve exactly the same set of problems 
that we can solve by any other computational model, even if 
that other model initially seems far more advanced. 

•� The usual strategy for proving that two computational models 
are equivalent is to come up with a strategy for transforming a 
arbitrary problem that uses the more advanced model into an 
equivalent problem that uses the less advanced one.  This 
approach is called reduction. 

The mills of the gods grind slowly, but they grind exceedingly fine. 
—Sextus Empiricus, 2nd century C.E. 
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Tiling Problems 
•� The notion of undecidability comes up in many different 

contexts, most of which seem completely unrelated to the idea 
of Turing machines.  

•� One particularly interesting application appears if you try to 
answer the question of whether a set of tiles—constrained by 
rules that the colors on their edges have to match—can be 
positioned so that they completely fill the plane. 

•� Tiling problems gained some mathematical attention in the 
1970s when Roger Penrose, Professor of Mathematics at 
Oxford developed a set of tiles that would tile the plane but 
only in a nonperiodic fashion. 

Penrose Tilings 

Penrose Tilings Nonperiodic Islamic Tilings 

Mosaic from the Darb-i Imam shrine, Isfahan, Iran, 15c 

Uncomputability of Tiling 
•� One of the surprising mathematical results of the 20th century 

is that the question of whether a set of tiles will cover the 
plane is uncomputable. 

•� The strategy for proving this result uses tiles to simulate a 
Turing machine, configuring the tiles in such a way that the 
tiles cover the complete plane only if that Turing machine 
runs forever starting on blank tape.  Since the halting problem 
is undecidable, the tiling problem must be undecidable also.  

•� In the remaining time, I will sketch the proof of a slightly 
simpler result, in which the set of tiles contains a designated 
start tile that must occur somewhere in the pattern: 

0�
s1 

Simulating a Turing Machine in Tiles 
•� Suppose that your set starts with the following six tile types: 

0�
s1 

0� 0�

0� 0�

•� How far could you get if you start by placing the start tile? 
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Getting Started 
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Simulating a 1R1 Instruction 

0�
s1 

0�0� 0�0� 0�0� . . . . . . 

. . . 

0�
A�

0�
s1 

start�

0�
B�

0�
C�

0�
D� E�

1� 0�
s1 

0� 0�0�0�0�

1�
F�

0�
H�

0�
s1 

G�

0�
I�

0�
J�

0�
K�

Completing the Tiling 
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Removing the Origin Constraint 
•� Requiring a special start tile 

makes it easier to prove that 
tiling is uncomputable. 

•� You can eliminate the start 
tile by embedding the Turing 
machine simulation inside a 
Sierpinski triangle in which 
the computation is replicated 
at different scales.  


